Description of calendar procedures
from Calendar.dll library

Mikotaj Hajduk

E-mail: mikhajduk@gmail.com
Homepage: http://mikhajduk.houa.org

June 16th, 2008

Contents
[Preface 1
[I. Historical context« o o v v v v i 2
III. Description of library functions 4
IV, Mathematical model 8
IV.1. Notational conventions 8
IV.2. Mathematical model of calendar functions 10

I. Preface

Creation of the library containing functions for inter-calendar conversions (between Julian and Gregorian calendars) was mainly inspired by my interest
to history (especially to its ancient part). In addition it was interesting challenge from the mathematical and programming points of view. First I had
to create mathematical models of all calendar functions which were then implemented in FASM assembler. In the first version of this library calendar
functions were limited to the time interval starting from the beginning of the common era (for the Julian calendar) and from 15 Oct 1582 (for the
Gregorian calendar). Ending point was some day in the future distant 11 million years from the present day. But many dates interesting for historians
is placed before beginning of the common era. Consequently, it was necessary to reconstruct mathematical models of the calendar functions and their
implementations in such a way that they still could be used in the time interval of 11 million years but with the beginning of the common era placed
almost exactly in the middle of this distance. Library functions were extended for dates preceding introduction of the Gregorian calendar and 1 Jan 1 CE
for the Julian calendar (such calendars are named proleptic). After all these changes every date conversion between both systems is very convenient.

mailto:mikhajduk@gmail.com
http://mikhajduk.houa.org

This library has description in three languages (English, Russian and Polish) in order to maximize the number of the potential users.

II. Historical context

During the long evolution of the human civilization and after many astronomical observations length of the solar year was roughly estimated to 365 days.
Such year was a base of the Egyptian calendar. More precise observations of moving of the star Sopdet (Sirius, Greek Sothis) made by Egyptian priests
led them to the conclusion that average year length is equal to 365.25 days. This approximation was used for building a new calendar during reform
introduced by Julius Caesar in 46 BCE. In Julian calendar every fourth (leap) year of the cycle is longer from the others and has 366 days.

However, average length of the Julian year is to big in comparison to the length of the mean solar year which has 365.2422 days. In consequent, after
128 years in the Julian calendar appears additional erroneous day. Julian calendar is "too slow” and real date of the vernal equinox more and more
precede over time date estimated during the reign of the Constantine the Great in 325 to March 21th. Such situation was very inconvenient because in the
Christian liturgical calendar date of Easter is calculated in dependence of date of the vernal equinox. Here is a principle for determining the date of Easter:

Easter is the first Sunday after the first full moon that is on or after the ecclesiastical vernal equinox.

In order to solve this problem Pope Gregory XIII introduced the new reform of calendar which was based on the two principles:

e correction of the 10-day difference between ecclesiastical date of the vernal equinox and the real astronomical event which was an effect of the
Julian’s calendar inaccuracy,

e introduction of the new principle for determining leap years - every year which number is divisible by 4 is leap with exception for the year numbers
divisible by 100 and not divisible by 400.

This reformed calendar (named Gregorian since that time) was adopted by most countries in the world, however it was long and complicated process. In
the table presented below are shown dates of introduction of the Gregorian calendar in chosen countries:

Date Country

1582 Italy, Spain, Portugal,
Poland and France

1700 Germany
1752 Great Britain
1753 Sweden
1873 Japan
1916 Bulgaria
1917 Turkey
1918 Russia
1919 Romania
1923 Greece

1949 | People Republic of China

This table contains chosen dates (in Julian and Gregorian calendars) from the time interval which is accessible for calendar functions from described
library:

Day number Julian date Gregorian date Day of week Historical event
1 1 Jan 5843880 BCE | 30 Dec 5844001 BCE Saturday Conventional beginning date

2134298452 12 Sep 490 BCE 7 Sep 490 BCE Thursday Battle of Marathon
2134356546 1 Oct 331 BCE 26 Oct 331 BCE Friday Battle of Gaugamela
2134477171 1Jan 1 30 Dec 1 BCE Saturday Beginning of the Common Era
2134505895 24 Aug 79 22 Aug 79 Tuesday Explosion of Vesuvius
2135007662 29 May 1453 7 Jun 1453 Tuesday Fall of Constantinople
2135022043 12 Oct 1492 21 Oct 1492 Friday Discovery of America
2135054907 4 Oct 1582 14 Oct 1582 Thursday Control date
2135054908 5 Oct 1582 15 Oct 1582 Friday Introduction of the Gregorian calendar
2135188665 19 Dec 1948 1 Jan 1949 Saturday Control date
2135207292 19 Dec 1999 1 Jan 2000 Saturday Control date
2135210376 29 May 2008 11 Jun 2008 Wednesday Control date

232 1 3 Aug 5915100 17 Jan 5915222 Monday Conventional ending date

III. Description of library functions

This section contains description of the calendar functions in the programming context. More detailed mathematical description of these function is
presented in the subsection IV.2.

Caution: for dates preceding beginning of the common era we assume that the year number is negative. The year 0 doesn’t exist in this numbering
system (in contradistinction to the astronomical calendar).

DWORD DayOfWeek (DWORD Y, DWORD M, DWORD D, DWORD Gregorian)

Description
This function calculates the day of the week for the given date. Each day of the week is identified by number: 0 - Sunday, 1 - Monday, 2 - Tues-
day, 3 - Wednesday, 4 - Thursday, 5 - Friday, 6 - Saturday.

Parameters

e Y - year,

e M - month,

e D - day,

e Gregorian - chosen calendar (0 - Julian, 1 - Gregorian).
Returned values

e 0,1,...,6 if the date is valid,

e —1 for the invalid parameters.

DWORD IsLeapYear (DWORD Y, DWORD Gregorian)

Description
This function determines if the given year is leap in the chosen calendar.

Parameters
e Y - year,

e Gregorian - chosen calendar (0 - Julian, 1 - Gregorian).

Returned values
e 1 if the year Y is leap, 0 - in opposite case,

e —1 for the invalid parameters.

DWORD MDToDayNum(DWORD M, DWORD D, DWORD LeapYearFlag)

Description
This function calculates the ordinal number of the day in the year.

Parameters

e M - month,

e D - day,

e LeapYearFlag - flag determining if the year is leap (0 - normal year, 1 - leap year).
Returned values

e 1,2,...,365 for the normal year, 1,2,...,366 for the leap year,

e —1 for the invalid parameters.

DWORD DayNumToMD(DWORD n, DWORD LeapYearFlag, DWORD* M, DWORD* D)

Description
This function converts the ordinal number of the day in the year to the adequate month and day numbers. The result strongly depends on the flag
determining if the year is leap.

Parameters
e n - number of the day in the year,
e LeapYearFlag - flag determining if the year is leap (0 - normal year, 1 - leap year),
e M - pointer to variable where the calculated month number will be stored,

e D - pointer to variable where the calculated day number will be stored.

Returned values
e 0 for the valid parameters (n, LeapY earFlag),

e —1 in opposite case.

DWORD DateToAbsDayNum(DWORD Y, DWORD M, DWORD D, DWORD Gregorian)

Description
This function calculates the absolute day number for the given date.

Parameters
e Y - year,

e M - month,

D - day,

e Gregorian - chosen calendar (0 - Julian, 1 - Gregorian).
Returned values

e 1,2,...,232 — 1 for the valid date in the chosen calendar,

e 0 for the invalid parameters.

DWORD AbsDayNumToDate (DWORD N, DWORD Gregorian, DWORD* Y, DWORD* M, DWORD* D)

Description
This function converts the absolute day number N € {1,2,...,232 — 1} to the adequate date (for the chosen calendar).

Parameters
e N - absolute day number,
e Gregorian - chosen calendar (0 - Julian, 1 - Gregorian),
e Y - pointer to variable where the calculated year number will be stored,

e M - pointer to variable where the calculated month number will be stored,

e D - pointer to variable where the calculated day number will be stored.
Returned values
e 0 for the valid parameters (N, Gregorian),

e —1 in opposite case.

DWORD GregorianToJulian(DWORD Yg, DWORD Mg, DWORD Dg, DWORD* Yj, DWORD+ Mj, DWORD* Dj)

Description
This function converts the Gregorian date to the adequate Julian date.

Parameters
e Yg - year of the Gregorian date,

e Mg - month of the Gregorian date,

Dg - day of the Gregorian date,

Yj - pointer to variable where the calculated year number of the Julian date will be stored,
e Mj - pointer to variable where the calculated month number of the Julian date will be stored,
e Dj - pointer to variable where the calculated day number of the Julian date will be stored.
Returned values
e 0 for the valid Gregorian date,

e —1 in opposite case.

DWORD JulianToGregorian(DWORD Yj, DWORD Mj, DWORD Dj, DWORD* Yg, DWORD* Mg, DWORD* Dg)

Description
This function converts the Julian date to the adequate Gregorian date.

Parameters

e Yj - year of the Julian date,

Mj - month of the Julian date,

Dj - day of the Julian date,
e Yg - pointer to variable where the calculated year number of the Gregorian date will be stored,
e Mg - pointer to variable where the calculated month number of the Gregorian date will be stored,

e Dg - pointer to variable where the calculated day number of the Gregorian date will be stored.
Returned values

e O for the valid Julian date,

e —1 in opposite case.

IV. Mathematical model

IV.1. Notational conventions

The symbol Z denotes the set of integer numbers, R denotes set of real numbers.

The function E(x) : R — Z (also called entier or floor) for every real number x returns highest integer number less than or equal to x:

E(z) = |z] =max{k € Z; k <z}

For every predicate ¢(z1,x2,...,x,) defined in the set X by the symbol [p(a1,aq,...,a,)], where (a1,as9,...,a,) € X, we denote number value equal to
0 or 1 according to the Boolean value of the sentence ¢(ai,as,...,ay):
0 ; ¢(ar,ag,...,a,) is a false sentence
[qb(ala az, ..., an)] =
1 5 ¢(ar,a9,...,a,) is a true sentence

The constants C1, Cy, Co0, Caoo are equal to the lengths of base cycles in the Julian and Gregorian calendars:

C1 = 365, number of days in a normal year,
Cy=4C1 +1 = 1461 = 3 % 487, number of days in the 4-year cycle (base cycle of the Julian calendar),
Cloo = 25Cy — 1 = 36524, number of days in a "normal” century in the Gregorian calendar

(i.e. century ending with a normal, 365-day, year),

Cuoo = 4Ch00 + 1 = 146097 = 33 + 7% 773, number of days in the complete 400-year cycle of the Gregorian calendar.

The constant 7' (which could be named ”"Great Cycle”) is the least common multiple of lengths in days of the Julian 4-year cycle and Gregorian 400-year
cycle:

T = lem(Cy, Caoo) = 3% # 7 % 487 % 773 = 71149239

The constants J and G are equal to the numbers of the complete years of the Julian and Gregorian calendars respectively contained in the time interval
given by "Great Cycle” T":

T
J=4F | — | =194796
<C4)

G =400F <T> = 194800
Caoo

The starting point of the time interval in which calendar functions can work is a day preceding beginning of the common era (i.e. 1 Jan 1 in the Julian
calendar) by kT days where

k=30
That way beginning of the common era is placed almost in the middle of the time interval supported by calendar functions.

By the symbol DaySum(M, F') we denote the sum of lengths of months preceding given month M, where F' means the flag equal to 1 if the year is leap
and 0 in opposite case:

DaySum : {1,2,...,12} x {0,1} — {0,31,59,60,90, 91,120, 121, 151, 152, 181, 182, 212, 213, 243, 244, 273, 274, 304, 305, 334, 335}

M—24+12F
DaySum(M, F) = Z MonthLen;
i=12F

Table presented below contains values of the function DaySum for every pair (M, F) from its domain:

F\M123456789101112

0]31]59(90|120 | 151 | 181 | 212 | 243 | 273 | 304 | 334
1 0]31]60|91|121 | 152|182 | 213|244 | 274|305 | 335

The symbol (MonthLeny) denotes finite sequence of numbers which first 12 elements are equal to lengths of months of a normal year while next 12 values
are equal to the lengths of months of a leap year:

MonthLen : {0,1,...,23} —{1,...,31}
(MonthLeny) = (31,28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31)

IV.2. Mathematical model of calendar functions

This subsection contains description of mathematical models of the calendar functions (implementation of these functions was described in subsection
I11.).

DayO fWeek : Z* — {—1,0,1,...,6}

This function calculates the day of the week for the given date.

(N+5)mod7 ; NeZ—{0}
DayO fWeek(Y, M, D, Gregorian) =
-1 s N=0

where N is the absolute number of the day corresponding to the given date.

N = DateToAbsDayNum(Y, M, D, Gregorian)

IsLeapYear : 72 — {—1,0,1}

This function determines if the given year is leap in the chosen calendar.

-1 ;Y =0 V Gregorian ¢ {0,1}

Y #£0 A Gregorian =0

! i .
[Y" mod 4 = 0] ") Y #0 A Gregorian =1 A

Y’ mod 100 # 0

IsLeapY ear(Y, Gregorian) =

/ Y #0 A Gregorian =1 A
Y _ol .
[E (100) mod 4 0} " Y’ mod 100 = 0

where by the symbol Y’ we denote modified year number defined as follows:

Y = [Y]-[Y < 0]

10

MDToDayNum : 73 — {—1,1,...,366}

This function calculates the ordinal number of the day in the year (regarding the fact if the year is leap or not).

Me{l,...,12} AN Fe{0,1} A

DaySum(M,F) + D { D e{l,...,MonthLeniarin—1}

MDToDayNum(M,D, F) =

—1 ; in opposite case

DayNumToMD : 7Z* — {—1,0} x Z?

This function converts the ordinal number of the day in the year to the adequate month and day numbers.

(0,m,n — DaySum(m, F)) ; ne{l,...,366} A F e {0,1}
DayNumToMD(n,F,M,D) =
(—=1,M,D) ; in opposite case

where m is the month number calculated from the ordinal number of the day in the year (regarding value of the leap year flag F'):

m = max{:; i € {1,...,12} A DaySum(i,F) < n}

DateToAbsDayNum : 7Z* — 7

This function calculates the absolute day number for the given date.
n—364 ;Y =0AY #0 A Gregorian € {0,1} N n# —1
DateToAbsDayNum(Y, M, D, Gregorian) = ¢ N ;Y A0 AN Y #£0 A Gregorian € {0,1} A n# —1
0 ;Y =0 V Gregorian ¢ {0,1} V n= -1
where n denotes the ordinal number of the day in the year Y:
n = MDToDayNum(M, D, IsLeapY ear(Y, Gregorian))

By the symbol Y’ we denote the number of the given year calculated from the starting point preceding by kT days beginning of the common era (i.e. 1
Jan 1 in the Julian calendar):

11

Y=Y +[Y <0]+ kJ + k(G — J)[Gregorian = 1]
By the symbol N we denote the day number corresponding to the given date counted from the starting point:

Y' —1 Y' —1 Y' —1
N:365(Y’—1)+E< :)—F[Gregorianzl] (E(100 >—E(100)+2)+n

AbsDayNumToDate : 72 — {—1,0} x 73

This function converts the absolute day number N € Z to the adequate date (for the chosen calendar).
(-1,Y,M, D) ; N=0 V Gregorian ¢ {0,1}
AbsDayNumToDate(N, Gregorian,Y,M,D) = ¢ (0,—kG —1,12,29+ N) ; N € {1,2} A Gregorian =1
(0,Y'—[Y'<0], M, D) ; in other cases
The values Y/, M’ and D’ are obtained from the formulas:

Y =Y* — kJ — k(G — J)|Gregorian = 1]

(0,M',D") = DayNumToM D(N' + 1, IsLeapY ear(Y™*, Gregorian), M, D)

where the values N’ and Y* are calculated as follows:

N
(N’7Y*) = Q <N100 mod 04, YiOO +4F < 520))

where the function @ : {0,...,C4} x Z — {0,...,C1 + 1} X Z given by the formula

Qla,y) = <x—01min <E <cx*1> , 3) , y+1+min<E (é) 3))

converts a pair (the number of the day in the 4-year cycle, the year number) into a pair (the number of the day in the year, the updated year number).

The values Nygg and Yigp are obtained from the formula:

12

(N -1, 0) ; Gregorian =0
(N100 Y100) =

P <(N — 3) mod Cygp, 400E (Nf?’)) ; Gregorian = 1

C100

where the function P : {0,...,Cyoo} X Z — {0,...,Clo0 + 1} x Z given by the formula

P(z,y) = <x — C1po min <E <:1:) , 3) , ¥y + 100 min <E <x> , 3>>
C1o0 C1o0

converts a pair (the number of the day in the 400-year cycle, the year number) into a pair (the number of the day in the century, the updated year number).

GregorianToJulian : 75 — {—1,0} x 73

This function converts the Gregorian date to the adequate Julian date.

GregorianToJulian(Yy, My, Dg,Y;, M;, D;) = AbsDayNumToDate(DateToAbsDayNum(Yy, My, Dy, 1),0,Y;, M;, D;)

JulianToGregorian : 75 — {—1,0} x Z3

This function converts the Julian date to the adequate Gregorian date.

JulianToGregorian(Yj, M;, D, Yy, My, Dy) = AbsDayNumToDate(DateToAbsDayNum(Y;, M;, D;,0),1,Y,, My, Dy)

13

	Preface
	Historical context
	Description of library functions
	Mathematical model
	Notational conventions
	Mathematical model of calendar functions

